Minimum Cost of Nutritious Diet

Sri Lanka

October 2013—September 2014
The World Food Programme is determined to fight hunger and improve the food and nutrition security among the poor. Sri Lanka is a lower middle income country of which the poverty rate has further decreased to 6.5% in 2014. However, the current malnutrition rates have certainly not followed the pace of poverty reduction which might be partly attributed to the fact that the food poverty line (cost of securing nutritional requirements) as part of the overall poverty line is calculated to meet only calorie requirements. The food poverty line does not consider the costs associated with a nutritious diet.

The Minimum Cost of Diet (CoD) is one of the most popular methods used globally to measure the population’s affordability for a nutritious diet. WFP Sri Lanka extended its expertise and resources to establish a CoD monitoring system at the Hector Kobbekaduwa Agrarian Research and Training Institute (HARTI), Ministry of Agriculture. I am pleased that WFP was able to train more than 20 Government Technical Officials of HARTI, Ministry of Health, Ministry of Agriculture and Department of Census & Statistics on CoD methodology and tools.

Furthermore, I believe that the outputs of this study will directly contribute to identifying the provinces which need market and food security interventions and will also serve as an advocacy tool to highlight importance of food based nutrition interventions.

I congratulate the research team (HARTI, Department of Census & Statistics and Ministry of Health) for the commendable efforts extended in the production of this publication.

Ismail Omer
Representative- WFP Sri Lanka
MESSAGE FROM THE DIRECTOR OF HARTI

Hector Kobbekaduwa Agrarian Research and Training Institute (HARTI) has been a leading socio-economic research institution in the agrarian and rural sector since it was founded in 1972 and continues to be the national model of the excellence in the field of food security analysis. In 2014, HARTI established a CoD monitoring system with the collaboration of WFP which is working as a focal point in monitoring CoD in Sri Lanka. The CoD tool can be used to calculate the affordability or economic access to a nutritious diet and helps determine whether malnutrition and micronutrient deficiencies are caused by limited access to nutritious food.

In this exercise, the researchers calculated the CoD for all the provinces covering cultivating and harvesting seasons. I trust that the findings of this report will be a policy guidance to improve food based nutritional intervention. This publication is a collaborative work of HARTI with WFP, the Ministry of Health and the Department of Census & Statistics.

I would like to express my gratitude to the WFP for extending its expertise and resources to establish CoD monitoring system at HARTI. Furthermore, I congratulate the research team for the commendable work in the production of this report.

Haputhanthri Darmasena
Director/ Chief Executive Officer - HARTI
The Cost of Diet (COD) is a method to model the cost of a theoretical, simulated diet (food basket) which satisfies all nutritional requirements\(^1\) of a household of specific composition of interest (e.g. breastfed child, lactating mother, and other members) at the minimal possible cost, based on the availability, price, and nutrient content of local foods. Any other food basket at the same price will be less nutritious, and any other food basket of the same nutrient value will be more expensive. When combined with household income data, the COD can be used to estimate the proportion of households that could theoretically afford a nutritious diet. Hence, the COD tool helps determine whether malnutrition and micronutrient deficiencies are caused by insufficient access to nutritious food.

The 1996 World Food Summit in Rome defined food security as existing 'when all people, at all times, have physical and economic access to sufficient, safe and nutritious food to meet their dietary needs and food preferences for an active and healthy life'. There are a very few approaches measuring food access in terms of access to a diet that meets all nutrient requirements (nutritious diet). The COD tool determines the prevalence of households that cannot access the most cost effective nutritious diet. Poverty estimates only take into account the affordability of sufficient calories. Using the COD to identify a Nutrient Poverty Line can complement existing food poverty lines which represent the required purchasing power to acquire sufficient energy.

The COD approach was developed by Save the Children UK in response to research that demonstrated that the impact of traditional nutrition education programmes has been limited because of the economic constraints faced by many households in low-income countries (Chastre et al, 2009). Even in contexts where food is sufficiently available households might face inadequate food consumption due to lack of knowledge about a nutritious diet and food and nutrition practices. In this context the degree of the nutrient gap is due to economic constraints on acquiring a nutritious diet or lack of knowledge remains unknown. Meeting nutrient intake recommendations through a nutritious diet requires purchasing power. The required purchasing power can be quantified using the Cost of Diet approach. Based on locally available foods, the COD software identifies the cost of the cheapest possible combination of food items that meets the nutrient requirements of a household. The purchasing power required to meet nutrient intake recommendations can then be compared to actual purchasing power, based on the proportion of household income that can be spent on food.

In areas where the proportion of households that cannot afford a nutritious diet is high, interventions that provide either nutritious dense food and/or income assistance to households as well as improving market functioning for specific nutrient rich commodities may be required to make an impact on nutrition outcomes.

In areas where most people can afford an adequately nutritious diet but malnutrition still affects a considerable proportion of the population, interventions could be focused on education, behavioural change and water and sanitation to assure that nutritious choices are made, perhaps combined with micronutrient supplements for specific groups (Geniez et al, 2014).

The COD serves as advocacy tool to make the case for the importance of food-based nutrition interventions. Furthermore, the COD results can be used to model the comparative cost-effectiveness of various potential nutrition interventions and strategies (such as fortified complementary foods) by determines the cost of a nutritious diet that could be reduced as a result of the intervention.

The COD approach can also be used to model the effect of social safety nets on the affordability of a nutritious diet (vouchers or cash transfers) (Baldi et al, 2013; Frega et al, 2012).

\(^1\)The tool takes into consideration the following individual nutritional requirements: energy, proteins, fat, absorbed calcium, magnesium, zinc, absorbed iron, thiamine (B1), riboflavin (B2), niacin equivalent, vitamin B6, pantothentic acid, folic acid, vitamin B12, vitamin C and retinol equivalent.
COD APPLICATIONS

THE COD HELPS US SOLVE A COMPLEX PROBLEM: OPTIMIZING FOR NUTRIENTS WHILE CONSUMING FOOD ITEMS

WHAT IS THE MINIMUM COST OF FOODS THAT MEET THE NUTRIENT NEEDS OF A TYPICAL HOUSEHOLD?

The Cost of Diet software applies linear programming routines to generate hypothetical diets using a combination of foods that will enable a household to meet their energy and nutrient requirements according to WHO/FAO recommendations at the lowest possible cost. The software can estimate the cost of four hypothetical diets:

1. **MCCAL**: The lowest cost diet that only meets the average energy requirements
2. **MCEF**: The lowest cost diet that only meets the average energy and the recommended protein and fat requirements
3. **MCNUT**: The lowest cost diet that meets the average energy and the recommended nutrient requirements
4. **LACON**: The lowest cost diet that meets the average energy and the recommended nutrient requirements of the household and reflects cultural consumption patterns

The software provides the cost of the cheapest possible nutritious diet based on prices of locally available food items. It also generates a breakdown of the quantity at which each food item was included into the diet and the nutrients contributed by each food item. Based on the MCNUT diet results the analysts will decide whether or not a LACON should be calculated. While reflecting a typical local diet the LACON will always be more expensive and cannot be considered the cheapest possible nutritious diet.

IS THIS DIET AFFORDABLE?

When combined with income data the results produced with the COD software can be used to estimate the percentage of households that can or cannot afford a nutritious diet. The underlying assumption is that members of households that cannot afford the cheapest possible nutritious diet are more likely to be malnourished. The MCNUT as a threshold to estimate whether income is sufficient to afford a nutritious diet is referred to as the “Nutrient Poverty Line”. In addition to the MCNUT the affordability of a diet that only meets calorie requirements is calculated for Sri Lanka. This calorie threshold is also referred to as “Calorie Poverty Line”.

The “Official Poverty Line” for Sri Lanka is calculated based on the cost of meeting calorie requirements using a standard food basket plus an small amount required for essential non-food items. The Calorie Poverty Line is not the same as the official poverty line. It measures the cheapest possible combination of food items at local prices that would provide the minimum calorie intake required.

The COD results show that income above the national poverty line may not be sufficient to access a nutritious diet and as such contribute to preventing malnutrition.
Malnutrition remains a major challenge in Sri Lanka. Since the end of the civil war in May 2009, Sri Lanka has demonstrated strong economic performance and transitioned to a middle-income country. Despite this progress, vulnerability to food and nutrition insecurity and low resilience to climate variability persist around the country, most affecting the poorest households most.

Malnutrition still remains a major challenge in Sri Lanka, particularly acute malnutrition (wasting). In the latest National Nutrition Survey, Global Acute Malnutrition (GAM) was reported as 19.6% (MoH & UNICEF, 2012). Rates have shown little improvement over the past decade, fluctuating around 15% stunted and wasted respectively and 25% underweight (WFP & MED, 2014).

As a result of Sri Lanka's rapid economic development, which is mostly centralized in urban areas, food shortages mostly prevail in vulnerable pockets of the country. This can change rapidly whenever emergencies arise, usually following natural disasters such as severe droughts and floods, which can have detrimental effects on livelihood assets and destroy entire harvests with effects on food prices throughout the country (WFP, MED & HARTI, 2012).

In this context, the Hector Kobbekaduwa Agrarian Research & Training Institute (HARTI) has initiated a study on the "Minimum Cost of Diet" with the financial and technical assistance of the UN World Food Programme (WFP). The study was undertaken in collaboration with the Department of Census and Statistics and the Nutrition Enhancement Unit of the Ministry of Health.

The Marketing, Food Policy and Agribusiness Division of HARTI collects retail and wholesale prices of over 110 food commodities on a weekly basis as part of a food price monitoring system. The prices are collected in all district markets and district-level major food producing areas of the island. This existing price data was used for COD analysis. Given that prices are collected regularly, the COD can be monitored over time and will be included in the regular food price monitoring system of the department.

The objective of the COD analysis in Sri Lanka is to identify whether a nutritious diet can be found using locally available foods and whether this diet can be afforded by the population across different geographical and economic areas. The analysis depicted in this report covers the period starting from October 2013 to September 2014 and is divided into four seasons: Maha planting season (October 2013 – January 2014), Maha harvesting season (February – March 2014), Yala planting season (April – July 2014) and Yala cultivation season (August – September 2014).

The COD is based on secondary price data from HARTI and income data from the Household Income and Expenditure Survey (HIES) 2012/13 (DCS, 2013b). A model household was determined based on household composition data from the Sri Lanka Census of Population and Housing (DCS, 2012). District price data for 86 food items were averaged for each season and aggregated at provincial level. The resulting per capita MCNUT and MCCAL were then compared to per capita income data from the same Province.

The HIES (2012/13) determines that upon excluding the wealthiest quintile, households spend around 50% of income on food. As such, the MCNUT and MCCAL poverty lines were compared to 50% of household expenditure to determine the proportion of households that can afford to meet the minimum nutritional requirements of the diet.

MODEL HOUSEHOLD FOR SRI LANKA COD ANALYSIS

1 Woman 30-59 years (lactating) 55 kg, moderately active
1 Man 30-59 years, 60 kg, moderately active
1 Child 1-2 years
1 Child 2-3 years
1 Child 3-6 years
1 Child 5-6 years
1 Child 6-13 years
1 Child 10-13 years

The MKC consists of the Hector Kobbekaduwa Agrarian Research Institute (HARTI).
NUTRIENT AND CALORIE POVERTY LINE

ACCESS TO NUTRITIOUS DIET ACROSS SEASONS (2013-14).

ACCESS TO ENERGY ONLY DIET ACROSS SEASONS (2013-14).
RESULTS

THOUGH WIDELY AVAILABLE ACROSS SRI LANKA, ACCESS TO NUTRITIOUS FOOD IS LIMITED DUE TO ECONOMIC CONSTRAINTS

The cost of a nutritious diet for the model household varies from LKR 11,831 in the Northern Province in Maha harvesting season to LKR 18,913 in the Western Province in Yala harvesting season. The cost increases in all the provinces during Yala harvesting season. Compared to the Maha planting season, when prices of nutritious foods are at their lowest, the cost of a nutritious diet increased between 2% - 16%. The highest cost increase MCNUT was recorded in the Uva Province, while the lowest variation in cost was in the Northern Province.

The energy only diet ranges from LKR 4,898 in the Eastern Province in Maha planting season to LKR 7,268 in the Western Province in Yala harvesting season. The cost of an energy only diet increased significantly in Yala harvesting season. Compared to the Maha planting season, the cost of an energy only diet increased between 15% (Northern Province) to 41% (Western Province). This is predominantly caused by the steady rise in rice prices during 2014.

In undertaking the MCNUT analysis, certain nutrients appeared to be more difficult to obtain than others. These included iron across all provinces and calcium in half of the provinces. Sri Lanka experiences a high prevalence of anaemia among children and pregnant women. Lack of iron rich foods in local markets may be a possible factor.

Out of all food items included in the analysis, the following were selected through linear programming to provide the least costly nutritious diet: Rice, Dhal, Mukunuwenna, Dried Salaya, Chickpea, Coconut oil, Palm oil, Chicken liver, Dried Sprats and Dried chilies.

Regionally, more than half of the households in the Eastern Province could not afford an adequately nutritious diet during the past year. In the Uva Province it ranged between 39% and 48%, while in the Northern and Central Provinces the percentage ranged between 27% and 36%.

In contrast, most households in Sri Lanka could afford sufficient calorie diets, except for the Northern Province where about 15% of the households cannot even afford a calorie only diet. In the Eastern Province the percentage of households unable to access sufficient calories increased significantly during Yala season (11-14%).
Results MCNUT

<table>
<thead>
<tr>
<th>PROVINCE</th>
<th>MAHA CULTIVATION</th>
<th>MAHA HARVESTING</th>
<th>YALA CULTIVATION</th>
<th>YALA HARVESTING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCNUT IN LKR</td>
<td>% CANNOT AFFORD MCNUT</td>
<td>MCNUT IN LKR</td>
<td>% CANNOT AFFORD MCNUT</td>
</tr>
<tr>
<td>Central</td>
<td>14,964</td>
<td>35%</td>
<td>15,154</td>
<td>36%</td>
</tr>
<tr>
<td>Eastern</td>
<td>15,976</td>
<td>57%</td>
<td>15,283</td>
<td>55%</td>
</tr>
<tr>
<td>North Central</td>
<td>14,117</td>
<td>27%</td>
<td>14,361</td>
<td>27%</td>
</tr>
<tr>
<td>North Western</td>
<td>14,479</td>
<td>33%</td>
<td>14,724</td>
<td>34%</td>
</tr>
<tr>
<td>Northern</td>
<td>12,454</td>
<td>35%</td>
<td>11,831</td>
<td>32%</td>
</tr>
<tr>
<td>Sabaragamuwa</td>
<td>15,064</td>
<td>39%</td>
<td>15,698</td>
<td>41%</td>
</tr>
<tr>
<td>Southern</td>
<td>13,813</td>
<td>31%</td>
<td>14,083</td>
<td>31%</td>
</tr>
<tr>
<td>Uva</td>
<td>13,452</td>
<td>39%</td>
<td>13,578</td>
<td>39%</td>
</tr>
<tr>
<td>Western</td>
<td>16,645</td>
<td>22%</td>
<td>16,917</td>
<td>23%</td>
</tr>
</tbody>
</table>

Results MCCAL

<table>
<thead>
<tr>
<th>PROVINCE</th>
<th>MAHA CULTIVATION</th>
<th>MAHA HARVESTING</th>
<th>YALA CULTIVATION</th>
<th>YALA HARVESTING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MCCAL IN LKR</td>
<td>% CANNOT AFFORD MCCAL</td>
<td>MCCAL IN LKR</td>
<td>% CANNOT AFFORD MCCAL</td>
</tr>
<tr>
<td>Central</td>
<td>5,181</td>
<td>4%</td>
<td>5,659</td>
<td>4%</td>
</tr>
<tr>
<td>Eastern</td>
<td>4,898</td>
<td>8%</td>
<td>5,138</td>
<td>9%</td>
</tr>
<tr>
<td>North Central</td>
<td>5,061</td>
<td>3%</td>
<td>5,482</td>
<td>4%</td>
</tr>
<tr>
<td>North Western</td>
<td>5,003</td>
<td>5%</td>
<td>5,413</td>
<td>5%</td>
</tr>
<tr>
<td>Northern</td>
<td>5,536</td>
<td>13%</td>
<td>5,796</td>
<td>15%</td>
</tr>
<tr>
<td>Sabaragamuwa</td>
<td>5,118</td>
<td>3%</td>
<td>5,612</td>
<td>4%</td>
</tr>
<tr>
<td>Southern</td>
<td>4,966</td>
<td>4%</td>
<td>5,312</td>
<td>5%</td>
</tr>
<tr>
<td>Uva</td>
<td>4,900</td>
<td>8%</td>
<td>5,262</td>
<td>8%</td>
</tr>
<tr>
<td>Western</td>
<td>5,171</td>
<td>1%</td>
<td>5,579</td>
<td>1%</td>
</tr>
</tbody>
</table>
DISCUSSION AND CONCLUSION

COD and Poverty

The official poverty line is calculated based on food and non-food requirements. The poverty head count ratio reflects those households with a total expenditure below this line. The MCCAL in contrast is only based on calories and uses 50% of household income. Irrespective of the way poverty is measured, the magnitude and geographic distribution of poverty is comparable. However, being able to afford an energy-only diet masks a household’s ability to afford a nutritious diet. A low poverty head count therefore does not mean that the population is food secure. It is almost three times higher in terms of nutrition poverty.

COD and Malnutrition

There seems to be a direct link between the cost of diet results and malnutrition outcomes. This indicates that the inability of households to access sufficient nutritious food could be a key contributing factor of malnutrition in the country. Interventions directed at preventing and reducing malnutrition should therefore either supplement incomes, make nutrient rich foods available or facilitate market functioning in addition to programmes focusing on nutrition awareness, improvement in water and sanitary facilities and access health facilities, to make an impact on nutrition outcomes.
Target groups

By calculating both, the Nutrient and Calorie Poverty Line, the approach provides a refined framework for policy decision making as it allows categorizing specific population groups based on their capacity to afford diets. Households in Group C can afford both, sufficient calories and nutrients, Group B can afford calories but not nutrients and Group A can afford neither of the two. It can be assumed that members of households in Group A are more likely to be deficient in both micro- and macronutrients, members of households in Group B are more likely to be deficient in micronutrients, while members of households in Group C can afford both micro- and macronutrients. However, this does not guarantee that households in Group C consume a nutritious diet.

The COD can contribute to identifying suitable interventions for households in the three determined groups. The proposed interventions below are in line with the National Nutrition Policy of Sri Lanka (MoH, 2010) and the Multi-sector Action Plan for Nutrition (NNC, 2013).

Group A: Food based approaches to ensure access to adequate, nutritious, safe and quality food at affordable price throughout the year. Interventions for this group might include food assistance and social safety interventions to improve access to sufficient micro- and macronutrients.

Group B: Nutrient enhancement by promoting and facilitating improvement of commonly consumed food items (eg. Food fortification) to ensure micronutrient supplementation to vulnerable groups. Interventions for this group include micronutrient supplementations as well as social safety net interventions which improve access to sufficient micronutrients.

Group C: Promotion of dietary diversification to ensure consumption of a wide variety of foods ensuring intake of all macro- and micronutrients to prevent deficiency disorders and diet related chronic diseases. Interventions include nutrition education campaigns, behavioral change communication to increase awareness and improve consumption of nutritious food amongst households which can afford a nutritious diet.
In the Central Province the MCNUT increased continuously across all the seasons. It increased by 7% in Yala harvesting season compared to the Maha planting season. Prices of nadu rice, raw white rice, red dhal, dried sprats and dried salaya are slightly higher in the province compared to the others which caused the MCNUT to be the second highest of all provinces in Yala harvesting season. When combined with 50% of total per capita income, 35% of households cannot afford a nutritious diet in Maha planting season. This increased to 39% in Yala harvesting season. Only 4% of households cannot afford the MCCAL in Maha harvesting season. It increased to 8% in Yala harvesting season. The results highlight that both the access to energy only diet and nutrition poverty levels increased across the seasons in the Central Province.
Food prices in the Eastern Province are lower compared to national average prices, especially in the Yala harvesting season. As a result, the MCCAL and MCNUT poverty lines are among the lowest among all provinces. In contrast to other provinces, the MCNUT decreased across the seasons by 4%, 9%, and 4% respectively, in Maha harvesting season, Yala planting season, and Yala harvesting season compared to the Maha planting season. However, per capita income is by far the lowest in the Eastern Province. Using 50% of total per capita income, 55% of households cannot afford the MCNUT and 14% cannot afford the MCCAL during 2014 Yala harvesting season. The percentage of households that do not have access to a nutritious diet is the highest among all provinces across the four seasons.
In the North Central Province, the cost of MCNUT and MCCAL diet increased across the seasons. Compared to the Maha planting season, MCNUT and MCCAL increased by 13% and 34% respectively in Yala harvesting season. Using 50% of total per capita income, 27% of households cannot afford a nutritious diet in Maha planting season. This increased to 32% in Yala harvesting season. The main factor driving the increased diet cost was a rise in the price of rice and dried fish varieties. The percentage of households which cannot afford MCCAL did not change significantly and remained around 4% across all the seasons.
In North Western Province the MCNUT and the MCCAL increased by 4% and 34% respectively in Yala harvesting season compared to the Maha planting season. One third of households cannot afford a nutritious diet in Maha planting season. This increased to 35% in Yala harvesting season. In Maha planting season 5% of the household cannot afford sufficient energy and this increased to 9% in Yala harvesting season. The increase of rice prices by around 30% in Yala harvesting season compared to Maha planting season can be identified as one of the main causes of hardships.
In the Northern Province, food prices are lower than the national average and rice prices increased at a lower rate. Hence, the cost of MCNUT and MCCAL diet are lower in the Northern province compared to other provinces. MCNUT and MCCAL increased by 2% and 14% in Yala planting season compared to the Maha planting season. About 36% of the households cannot afford a nutritious diet and 16% cannot afford an energy only diet in Yala harvesting season.

Diet Composition

<table>
<thead>
<tr>
<th>All Seasons</th>
<th>NADU RICE</th>
<th>RED DHAL</th>
<th>MUKUNUWE NADA</th>
<th>DRIED CHILLIES</th>
<th>CAPSICUM</th>
<th>CHICKEN LIVER</th>
<th>DRIED FISH</th>
<th>SALAYA</th>
<th>PALM OIL</th>
<th>COCONUT OIL</th>
<th>BREAST MILK</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAHA CULT</td>
<td>+ RAW RICE</td>
<td>+ CHICKPEA</td>
<td>+ GOTUKOLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAHA HARV</td>
<td>+ RAW RICE</td>
<td>+ CHICKPEA</td>
<td>+ GOTUKOLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+ MANIOC</td>
</tr>
<tr>
<td>YALA CULT</td>
<td>+ RAW RICE</td>
<td>+ GOTUKOLA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+ MANIOC</td>
</tr>
<tr>
<td>YALA HARV</td>
<td></td>
<td>+ DRUMSTIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Seasonal Cost of Diet

- **Maха Cultivation**: {\text{12,454}}
- **Maха Harvesting**: {\text{11,831}}
- **Yala Cultivation**: {\text{12,307}}
- **Yala Harvesting**: {\text{12,721}}

- **Nutritious Diet**: {\text{5,536}}
- **Energy Only Diet**: {\text{5,796}}
In the Sabaragamuwa province, MCNUT and MCCAL increased by 2% and 31% respectively in Yala harvesting season compared to the Maha planting season. In contrast, MCNUT decreased by 5% and 1% respectively in Maha harvesting season and Yala cultivation season compared to the Maha planting season. In Yala harvesting season, prices of nadu rice and dried salaya were above the national average. Further, 41% of the population cannot afford a nutritious diet while 7% cannot afford sufficient energy.
In the Southern Province, MCNUT and MCCAL increased across the seasons. The MCCAL increased by 28% in the Yala harvesting season mainly due to increases in the price of rice. Food prices in the Southern Province are slightly lower than in other provinces and MCCAL and MCNUT recorded the second lowest of all provinces in Yala harvesting season. The Southern Province recorded the best affordability after the Western Province and 94% and 68% of the total population can afford a calorie only and nutritious diet, respectively, in the Yala harvesting season. With the increase of food prices across the seasons the level of affordability decreased slightly.
In the Uva Province both MCCAL and MCNUT increased continuously across the seasons. MCCAL and MCNUT increased by 31% and 16% in *Yala* harvesting season compared to *Maha* cultivation season mainly due to the price increase of staple food. The level of affordability of both calories only diet and nutritious diet remained at the same level in *Maha* planting season and *Maha* harvesting season and then decreased in *Yala* harvesting season. In *Yala* harvesting season 48% of the total population cannot afford a nutritious diet.
The Western Province recorded the highest MCNUT. The Cost of diet increased across the seasons. Food prices are above the national average. The MCNUT and MCCAL increased by 14% and 41% in Yala harvesting season compared to Maha planting season. In Maha planting season 22% of the households could not access a nutritious diet. This increased to 28% in Yala harvesting season. Only 1% of total household could not afford sufficient energy in Maha planting season. It increased to 3% in Yala harvesting season.

For more information:
The Marketing, Food policy and Agribusiness division
Hector Kobbekaduwa Agrarian Research and Training Institute
114, Wijerama Mawatha,
Colombo 07,
Sri Lanka.

Tel : +94-11-2698539-41 / +94-11-7417100-5

Fax : +94-11-2692423

Email : info@harti.lk
RESEARCH TEAM

Soomee Bahuman - Consultant-WFP
N.P.G. Samantha - Coordinator - HARTI
Laksiri Nanayakkara - WFP
E.A.C.Priyankara - HARTI
W.H.D. Priyadarshana - HARTI
P.A.J. Champika - HARTI
E.U.A. Shantha - HARTI
N.S.J.K. Nissanka - HARTI
M.N. Wijenayake - HARTI
Y. Weerasekara - MRI
J.M. Ranbanda - MRI
R.M.D.P. Rathnayake - NCD
R.M.L.R. Thilakaratne - NCD
W.A.C. Wijebandara - DOC
Dilhani Deepawansa - DOC